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Abstract

We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using gen-
eralized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare
approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical exper-
iments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates,
and quadratic serendipity bases over polygonal meshes on the domain. For a convex n-sided polygon, the quadrat-
ic serendipity elements have 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge
midpoint, rather than the usual n(n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms
are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results
show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus tradition-
al finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity
finite elements obtained by our greedy algorithms can be further refined using an L,-optimization to improve the
piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for
modeling features/discontinuities in functional data/image approximation.
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1. Introduction

The problem of approximating/fitting given data by smooth or piecewise-smooth bivariate functions has been
extensively studied in fields such as computer aided geometric design, computer graphics and computer vision [34].
There are a great variety of bivariate functions used in data approximation, such as power functions [[12]], various
splines [19] 16} 23], and radial basis functions [7]. The appropriate choice of bivariate function spaces for the purpose
of data approximation depends on the characteristics of the given input data. For example, input data acquired from
smooth surfaces are expected to be approximated by globally smooth functions or piecewise splines with in-built
smoothness control, such as B-splines [30] and DMS-splines [9]. Piecewise continuous surfaces that have sharp
curvilinear features are expected to be approximated by a set of piecewise smooth functions which can be defined on
disjoint regions independently. The focus of our paper is in constructing such functional data approximations, using
smooth polygonal finite elements, with adaptation to data features.

A fundamental problem in piecewise smooth approximation is to appropriately decompose the parametric domain
into a modest number of sub-regions, such that the local and global approximation reaches a pre-specified error
threshold. Besides tensor product splines, which are limited to work on rectangular domains, there are a large number
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of existing methods utilizing piecewise polynomials on triangulations of the domain which interpolate or approximate
input data [23| 22]. Furthermore, significant effort has been devoted to constructing approximations on triangulations,
with continuity of higher order across triangle boundaries [35} 29] and (or) with higher approximation orders [50,
49, [18]. In certain applications, the lack or presence of appropriate approximation precision is most important .
For example, linear functions on triangulations are commonly used in image data approximation. Since the optimal
solution of image data approximation by piecewise smooth functions is generally unavailable, a large number of
previous papers focus on finding sub-optimal solutions and in a heuristic manner. Basically, these methods may
proceed in either of the following two ways: start with a sparse triangulation and adaptively refine the triangulation
to lower the approximation error [38] 25} [1| [2]; start from a dense triangulation and gradually decrease the number
of vertices to satisfy a pre-specified error threshold [21]. However, most mentioned methods suffer from too many
decomposed patches, and low approximation precision within each patch.

Of course, the decomposed sub-regions or the support of the patches do not need to be triangles or rectangles,
and can have a patch function basis yielding high approximation orders. In this context, the approximation problem
becomes more complicated and achieving optimal approximations is still actively being pursued [3} [12} [10} [11]].
Voronoi tessellations are perhaps the most popular polygonal tessellations used for piecewise approximation, due to
their elegant geometric properties and duality with Delaunay triangulations. There are several papers in the numerical
computation and PDE communities which use Voronoi tessellations to discretize the simulation domain, and use
generalized barycentric coordinates (GBCs) [13] or their higher order generalizations [36]. These papers utilize
relatively uniform Voronoi tessellations to achieve numerical robustness of finite element computations. For example,
the maximal Poisson-sampling method [42], the centroidal Voronoi diagram method [46]], and the short-edge removing
method [44] were used for generating Voronoi meshes that are uniform in size. Instead of using uniform Voronoi
diagrams, the focus of recent attempts has been on generating non-uniform Voronoi or optimized diagrams to achieve
adaptive piecewise approximations. In particular, optimization methods were proposed in [33] and [8] to generate
non-uniform Voronoi tessellations adapting to the features of the target functions or images, where the features or
discontinuities were well preserved by aligning the Voronoi cells along them. However, these methods find it difficult
to achieve geometric continuities across cell boundaries as they use full power order polynomials on each Voronoi cell.
In this paper, while we also focus on piecewise approximation on arbitrary Voronoi diagrams, in contrast to previous
methods, we resort to generalized barycentric coordinates based quadratic serendipity element (QSE) bases [36] . One
is able to achieve continuous approximations over non-uniform Voronoi meshes, while obtaining superior trade-offs
between approximation precision and the number of Voronoi cells. The proposed method can additionally be applied
to a function that has discontinuities.

On a convex n-sided polygon, QSEs have 2n basis functions, associated in a Lagrange-like fashion to each vertex
and each edge midpoint [36]. QSEs have many attractive theoretical properties, such as interpolation, smoothness, and
quadratic polynomial reproducibility, therefore they are ideal for the purpose of piecewise continuous approximation.
For example, benefiting from the interpolation property of QSEs, the approximation with a quadratic convergence rate
on each sub-region and the C° continuity between adjacent patches can be directly obtained without solving any linear
system with respect to the coefficients associated with the bases. In this paper, we verify the theoretical properties of
quadratic serendipity bases by numerical experiments and propose two polygonal mesh generation methods for them
to better approximate functional and scattered data (including triangular meshes and images). Our paper’s specific
contributions include:

1. We construct and analyze various trade-offs in piecewise approximations of functional data, discrete triangular
mesh surfaces and images, using generalized barycentric finite elements and particularly quadratic serendipity
elements for planar polygons. Moreover, we compare the approximation qualities (precision/convergence) of
these partition-of-unity, generalized barycentric finite elements, through several numerical experiments, and
using various barycentric coordinates. These are Wachspress coordinates [47], mean value coordinates (MVC-
s) [20]], natural neighbor coordinates (also called as Sibson’s coordinates) [40], and Poisson coordinates [26]].

2. Two greedy algorithms to generate Voronoi meshes for adaptive functional/scattered data approximation. The
results show space/accuracy advantages for the quadratic finite elements on these Voronoi polygonal domains
versus traditional finite elements over simplicial meshes.

3. The Voronoi polygonal meshes and parameter coefficients of generalized barycentric coordinates based quadrat-
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ic serendipity finite elements are further refined using an L,-optimization method to improve the piecewise
approximation. Our results thereby achieve a better trade-off between the approximation error and the number
of Voronoi cells that cover the data domain. Additionally, our experimental results show the efficacy of our
algorithms for modeling features/discontinuities in functional data/image approximation.

The rest of the paper is organized as follows. In Section 2, we review the definition of quadratic serendipity
elements for convex planar polygons. In Section 3, we compare approximation qualities (precision/convergence) of
barycentric coordinates on Delaunay triangulations/Voronoi diagrams and quadratic serendipity elements on Voronoi
diagrams. Two greedy algorithms are proposed to generate Voronoi diagrams which adapt to the distributions of the
given data. In Section 4, we further improve the Voronoi diagrams by optimizing a tailored objective function such
that approximation results better recover the features in the given data. In Section 5, a mesh optimization method is
applied to image approximation, and we show various examples by fitting quadratic serendipity elements to different
images. Finally, we present our conclusions and directions for further work in Section 6.

2. Quadratic serendipity elements for convex planar polygons

Generalized barycentric coordinates on general polygons are a convenient tool to linearly interpolate data that is
given on a polygonal domain. Their widespread usage ranges from computer graphics through to computational math-
ematics. In particular, generalized barycentric coordinates span the space of linear polynomials on general polygons.
Hence, they are considered as the shape functions for polygonal finite elements and utilized in various application-
s [15L 116l 31,1321 137, [17) 143 1441 145] [48]]. Despite their varieties, only a first order of approximation can be achieved
in these cases. To improve the approximation quality or convergence rate, one can use bases with higher orders.
Naturally, the pairwise products of the bases from the linear elements span the space of quadratic polynomials. In
this approach, the number of bases blows up quadratically with respect to the number of polygon vertices. Moreover,
a number of pairwise products vanish along the polygonal boundaries, and thus do not contribute to inter-element
continuity. Rand et al. provided a way of reducing the space of functions by piecing them together [36]]. The reduced
space still forms a continuous polygonal spline space with quadratic reproducibility and retains inter-element conti-
nuity. The corresponding quadratic finite elements are called generalized barycentric coordinates based quadratic
serendipity elements (QSEs), which are a generalization of serendipity elements for quadrilateral cases [S1} 15} i4].
Then, Sukumar presented the development of quadratic maximum-entropy serendipity shape functions on arbitrary
planar polygons by maximizing an objective functional subject to the constraints for quadratic completeness [36].
This method involves inexact and low efficient evaluations as it requires solving certain optimization problems nu-
merically. Recently, Floater and Lai provided a method of constructing polygonal splines of order two or higher over a
polygonal domain by using not only GBCs but also the local barycentric coordinates defined by triples of consecutive
vertices of a polygon [[15]. Their construction for the quadratic case is simpler while slightly more time-consuming
than the quadratic serendipity finite elements that appeared in [36] (see statistics of running times in Section 5). In
this paper, we develop algorithms for applications of partition-of-unity finite elements in functional/scattered data
approximation, and while we use QSEs [36]] as examples, our methods are applicable to other compactly supported
finite elements on polygonal domains.

Consider a planar polygon Q with n vertices {vy, v, - -+, v,} ordered counter-clockwise. Assume the polygon is
not self-intersecting and has no more than three consecutive collinear vertices. Then each vertex v; can be associated
with a GBC 4;. Starting from a set of GBCs {4;}7_, defined by an n-sided polygon €, the pairwise products generate a
quadratic function set {y; j :== A;4jli, j = 1,--- ,n}. Notice that y; ; = u;; := A;4;, hence each vertex can be associated
with a quadratic function y;;. And each edge or interior diagonal of the polygon can be associated with a function
2u;; with i < j. These quadratic bases naturally reproduce bivariate constant, linear and quadratic functions. To
further reduce the basis number and guarantee the Lagrange property, these bases are transformed, using the linear
combination method of [36].

First, the coeflicient 2 of each basis 2u; ; is written as the sum of six numbers as
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Figure 1: Quadratic serendipity on a six-sided polygonal domain. The vertices and middle points of the edges of the polygonal domain are marked
as filled and unfilled circles, respectively. (left) A basis 2u; ; associating with an interior diagonal of the polygonal domain contributes to six
different bases; (right) geometric meaning of the coefficients.
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I; (resp. I) is the intersection of segments v;v; and v;_; Vi (resp. v;1V;,1) (see Figure[T| (right)),
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and v; ; is the middle point of the edge with end points v; and v;. Then, each basis 2; ; for |i — j| > 1 can be written
as the sum of six terms, which only differ in their coefficients, as
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The six terms on the right hand side of the above equation are reallocated to six different bases p;;, 2uii—1, 2iii+1,
Hj» 20 j-1, 21 j+1 accordingly, which are associated with vertices v;, v; and their adjacent edges (see Figureﬂ] (left)).
More precisely, we obtain 2n bases on the polygonal domain Q: &;; and &;;4; fori = 1,--- , n, associated with vertex
v; and the middle point of edge v;v;, , respectively, where

ii+1 i+1,j
= Mij + Z C,]l'llj and fz i+1 — 2#1 i+1 + Z 2C,j Mi,j + Z 261+ljlul+1j

Jli=ji>1 Jili=ji>1 Jli=ji>1

Finally, to guarantee the Lagrange property, we define
i =&ii— &1 —&imris and Wiy = 454

It has been proved in [36] that the function set {; ;i = j or j = i + 1} defined by the above method has the properties
of constant, linear and quadratic precision and Lagrange like property. The polygonal domain with the function set
(i li = jor j =i+ 1} forms a construction of quadratic serendipity elements on convex polygons derived from
generalized barycentric coordinates. Examples of MVCs, Wachspress coordinates, Poisson coordinates, and natural
neighbor coordinates based QSE bases on a six-sided polygonal domain are shown in Figure 2] where basis functions
corresponding to the vertex with a large interior angle are plotted to better distinguish the difference between each
other. In the later sections, we will use the QSEs to fit discrete data and approximate analytic functions.

3. QSE:s for functional data approximation

Quadratic serendipity elements are suitable for approximating given functions to any desired accuracy as long
as the corresponding domains are appropriately discretized into polygonal elements. Moreover, the boundary values
can be interpolated. QSEs are also adoptable for fitting discrete data when a data parameterization (i.e., a one-to-one
mapping from the discrete data to a suitable domain [14]) is given. Owing to their quadratic polynomial reproduction
property, QSEs can approximate functions with a quadratic convergence rate. In this section, we verify the quadratic
convergence property of QSE bases in approximating an analytic function on a square domain. In addition, two greedy
algorithms are proposed for adaptive QSEs approximation.
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Figure 2: Quadratic serendipity element bases on a six-sided polygonal domain. First column: polygonal domain, where the vertices and middle
points of the edges of the polygonal domain are marked as black and pink points, respectively; the first and second rows are QSEs at a vertex and
a middle point of an edge of the polygonal domain, respectively, where the corresponding vertex and the middle point are marked with circles in
the first column. Second column to the last column: MVC based QSE bases, Wachspress coordinates based QSE bases, Poisson coordinates based
QSE bases and natural neighbor coordinates based QSE bases. Values of the bases are color-coded, where colors at the top and bottom of the color
bar represent the maximum and minimum values, respectively.

3.1. Notation

Assume that the input is a set of M vertices sampled from a given function f(x,y) defined over domain Q =
[0,1] x [0, 1]. We denote the sampling points on Q as (a;,3;), where i = 1,---, M. Assume that the domain Q is
divided into N polygonal cells with a tessellation 7 = {Q; € Q|k = 1,---, N} and each polygonal cell Q; has L;

vertices ordered counter-clockwise and denoted by {v;|l = 1,--- , L;}. Then the fitting on each cell € is constructed
as L
Ok(x,y) = Z SOV + Vi)W (1
i=1

where v;;, V41, ¥i; and ¢; ;4 are defined as described in the previous section. Then the approximate surface is a
group of C°-connected patches Q(x,y) = Zszl Oi(x,y). The fitting error at the parameter point (;,3;) is defined as
e; = |0(a;,B;) — f(a;,Bi)|. Then the maximum error (M.E.) is max{e;|i = 1,--- , M} and the root-mean-square error

(RM.S.E)is |/ €2/M.

3.2. Verification of the quadratic approximation property

Function 1.
f(x,y) = 0.1(1 + cos(2nx) sin(2my)), (x,y) € Q=1[0,1] %[0, 1].

In this section, we verify the quadratic approximation property of QSEs through experiments. The approximated
analytic function we use here is defined as Function 1. The input is a grid mesh with M = 513 x 513 vertices
uniformly sampled from the function. The domain is progressively divided into N = 16, 64,256, 1024, 4096 cells by
a special Voronoi diagram generation method, called centroidal Voronoi tessellation (CVT) method [27], such that
cells approximately have a uniform size (i.e., diameter) in the same mesh and are about half the size of the cells in
successive meshes. Table |I| summarizes the number of bases, M.E., and R.M.S.E. in each level of meshes and the
ratios of M.E. and R.M.S.E. between successive levels of meshes. As a comparison, we also report the fitting errors
by using MVCs on the same Voronoi diagram (VD) and barycentric coordinates (BCs) on the Delaunay triangulation
(DT) with the same number of faces. It can be seen that the expected quadratic convergence rate can be achieved
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Figure 3: Approximation results of Function 1 by using 64 elements. Rows from top to bottom are approximation results of MVC based QSEs
on VD, MVCs on VD, and BCs on DT. Columns from left to right are tessellations with 64 elements, interpolated points (red dot points), result
surfaces, surfaces with curved cell boundaries and color-coded fitting errors by the same color bar (dark red indicates the largest error of the three
cases and blue indicates the value of 0).

using QSEs. Approximations using MVCs on VD and BCs on DT only show a linear rate of convergence. It is also
worth noting that the number of bases of QSEs on VD only increases roughly linearly with the number of cells. And
the number of QSE bases is less than three times of the number of MVC bases on VD and less than ten times of the
number of BC bases on DT. The resultant surfaces constructed on 64 cells are shown in Figure 3]

Table 1: Statistics of the number of bases (denoted by Nbasis), M.E. and R.M.S.E. in each level of meshes and the ratios of M.E. and R.M.S.E.
between successive levels of meshes in approximating Function 1 by using MVC based QSEs on VD, MVCs on VD and BCs on DT.

Neell MVC based QSEs on VD MVCs on VD BCs on DT

Nbasis M.E. Ratio R.M.S.E Ratio Nbasis M.E. Ratio R.M.S.E Ratio Nbasis M.E. Ratio RM.S.E Ratio

16 83  1.95E-01 5.49E-02 34 7.33E-01 3.36E-01 11 8.92E-01 6.23E-01
64 323 2.19E-02 891 5.19E-03 10.57 130 247E-01 2.97 8.33E-02 4.03 36  4.36E-01 2.04 201E-01 3.10
256 1283 2.76E-03 7.94 6.22E-04 8.35 514 7.58E-02 3.26 2.10E-02 3.96 145 1.64E-01 2.66 5.19E-02 3.87
1024 5123 3.36E-04 823 7.73E-05 8.05 2050 1.79E-02 4.23 5.20E-03 4.04 545 3.78E-02 4.33 1.27E-02 4.10
4096 20483 4.11E-05 8.16 9.41E-06 821 8197 3.98E-03 4.50 1.25E-03 4.17 2106 8.41E-03 4.50 3.09E-03 4.10

3.3. Voronoi diagram based QSE fitting/approximation algorithms

Note that, if we adopt uniformly partitioned domains for surface fitting, such as uniformly refined polygonal mesh-
es in [24], a large number of uniform cells may be needed to reach a pre-specified fitting error threshold, especially
when the approximated function oscillates unevenly. To reduce the cell number and minimize the fitting error in the
approximation, an adaptive cell generation method is need. In this section, we propose two algorithms for approximat-
ing analytic functions or discrete data (with a given parametrization) using MVC based QSEs. Both algorithms take
a rectangular gridded height field as input, and approximate it with a group of C°-connected QSEs constructed on a
Voronoi mesh, i.e., a network of Voronoi cells tessellating the function domain. We begin with a coarse Voronoi mesh
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Figure 4: The second Voronoi mesh refinement approach. (left) Six Figure 5: Plots of R.M.S.E. (log-scale) against the cell number
points (black dots) and their corresponding Voronoi cells (black poly-  for the approximation of Function 2 by using Algorithm 1, where
gons). Warm colors represent high errors. (right) A circle (white) is  three elements including MVC based QSEs/MVCs on VD and
centered at the parametric point p; with the highest error and touchesa  BCs on DT are used. The cell number is slightly greater than the
previously inserted point #;. Two points (pink) on the circle are added iteration number for the three kind of finite elements. For exam-
to the point set, and p; becomes a vertex of the updated Voronoi mesh  ple, cell number is equal to iteration number plus one for the case
(gray polygons). of BC on DT. To illustrate the efficacy of the adaptive schemes,
we also include by way of reference, the approximation result by
using MVC based QSEs on uniform Voronoi cells generated by
the farthest point sampling method .

that is restricted to the function domain. For example, the initial mesh used here is the restricted Voronoi diagram gen-
erated by the four corners of the domain. Then on each iteration, the Voronoi mesh is refined by using a greedy point
insertion strategy, which seeks to insert one or several points in the domain to locally lower the approximation error
while keeping the previously inserted points fixed. By refining the Voronoi cells, the approximation quality of the
associated QSEs is improved progressively. The process of refinement continues until the approximation algorithm
reaches a desired error threshold or exhausts a pre-defined budget on the number of elements.

Algorithm 1: Voronoi mesh refinement algorithm by inserting the circumcenter of the Delaunay triangle with
the highest error

Input : a Voronoi tessellation 7 of the function domain Q and fitting errors {¢;|li = 1,--- , M}
Output: a refined Voronoi tessellation 7 of the function domain Q
let T be the dual Delaunay triangulation of the Voronoi tessellation 77
find the parametric point p; with the highest fitting error;
collect all the triangles in T that contain p;, and denote the triangle setby F' = {f; |j = 1,--- ,K};
choose a triangle in F with the highest R.M.S.E., and denote it by f;;
compute the circumenter of f;, and denote it by c;;
if ¢; € Q then
‘ insert ¢; into the Voronoi tessellation 7~ ;
else
‘ insert the middle point of the longest edge of fj;
end
return the new Voronoi tessellation 7;

o 0 N AN R W N -

_—
L

In each iteration, let p; be the parametric point of the point v; € R* with the highest error in the input data and T be
the dual Delaunay triangulation of the current Voronoi mesh. Then, two different Voronoi mesh refinement methods
are given as follows:

The first method is based on eliminating the Delaunay triangle f; of T where p; is located. A point is inserted
to the circumcenter of f; if it is inside the domain, otherwise, the middle point of the longest edge of f; is inserted.
Pseudo-code is given in Algorithm [I] Our refinement method is similar to the Delaunay refinement approach [39].
Although our algorithm inevitably introduces cells with short edges or large angles, as can be observed in Figure 6}
which may violate the criteria for a “well-shaped polygonal element” [17, [41]], experiments show that it usually
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Figure 6: Approximation results of Function 2 by using MVC based QSEs on VD with 19 cells (first row), MVCs on VD with 116 cells (second
row), and BCs on DT with 156 faces (third row). Columns from left to right are the result surfaces with interpolated points, result surfaces with
curved cell boundaries, color-coded approximation errors, and the tessellations generated by Algorithm 1. The R.M.S.E threshold is 0.01.

generates polygonal meshes that are good enough for the functional data approximation applications.

Algorithm 2: Voronoi mesh refinement algorithm by refining the facet with the highest data approximation error

e 0 N AN R W N =

—
=]

Input : a Voronoi tessellation 7~ of the function domain Q and fitting errors {e;li = 1,--- , M}
Output: a refined Voronoi tessellation 7 of the function domain Q
find the parametric point p; with the highest fitting error;
find the nearest site of the Voronoi tessellation 7, and denote it by ¢;;
construct a circle C that is centered at p; and has a radius of [t; — p;l;
randomly sample two points on the circle C, denoted by 7] and 75, and add them to the Voronoi tessellation 7
repeat
move #] and 7] to the centroids of their corresponding Voronoi regions; /* Lloyd’s iteration */
project £} and 7] onto the circle C;
update the Voronoi tessellation;
until iteration number > 5;
return the new Voronoi tessellation 7;

The second method is based on progressively eliminating the highest approximation error. It constructs Voronoi

cells with a vertex coincident with p;, such that the associated QSEs can interpolate the point v; with the currently
highest error. Pseudo-code is given in Algorithm 2] Specifically, a circle C centered at p; continues to grow until
it touches a vertex ¢; of the dual Delaunay triangulation 7. Then two points #; and #; are sampled on this circle.
Furthermore, positions of ¢} and 7] restricted on the circle C are optimized by the Lloyd’s method [28], such that the
existing points and newly added points distribute evenly (see Figure E[) Voronoi cells associated with ¢, ¢} and 75 have
pi as a vertex, therefore, the associated QSEs interpolate the data point v; associated with parametric point p;.

As the two approximation algorithms differ only in the Voronoi mesh refinement approaches, we also refer to the



two greedy algorithms Algorithm 1 and Algorithm 2 as the same as their refinement approaches, when there is no
ambiguity. In our experiments, we find that while both algorithms generate similar results in the sense that they reach
a similar error threshold by using almost the same number of cells, an advantage of the second algorithm is that it
inserts two points in each iteration, so reaches the error threshold by using fewer iterations. For brevity, we only report
the results generated by Algorithm 1 here. We also present an comparison of approximation abilities of MVC based
QSEs/MVCs on VD and BCs on DT through experiments, where all the cells are generated by Algorithm 1. Here,
we only use MVC based QSEs to illustrate the feasibility of the proposed greedy algorithms. Comparisons between
different coordinates based QSEs will be reported in the following section.

Function 2. . .
Fx,y) = 107 exp’ = D0=37 - (x,y) e Q = [0,1] x [0, 1].

Two models are used as test data sets. The first data set is uniformly sampled from the analytic Function 2.
The plots of R.M.S.E. against the cell number in Figure [5] clearly show that the increasing cell numbers decrease
the approximation error. In particular, the algorithm with MVC based QSEs on VD uses far fewer cells (equally,
iteration steps) to reach the same error threshold than with other two kinds of finite elements. The approximation
results with R.M.S.E. just falling below the threshold of 0.01 are shown in Figure[6] where the first, second and third
rows are the approximation results by MVC based QSEs on VD (19 cells), MVCs on VD (116 cells), and BCs on
DT (156 triangular faces). The first and second columns show the result surfaces with interpolated points and curved
cell boundaries, while the third column shows the color-coded approximation errors and the last column shows the
tessellations generated by Algorithm 1.

The algorithm can be naturally applied to image data or scattered data points, as long as there is an appropriate
parametrization. Figure [7| shows approximation results with a R.M.S.E threshold of 0.001 on the second test model,
i.e., a triangular mesh with its 2D parametrization. Similar to the case of analytic function above, MVC based QSEs
use far fewer finite elements (equally, iterations) than the other two types of finite element bases to reach the same
error threshold. Furthermore, MVC based QSEs generate a visually smoother surface.

4. Optimized Voronoi mesh generation

As can be observed from Figure[6|and Figure[7]that input data with more sharp features may need more cells for the
approximation. However, there is no guarantee that Algorithm 1 can recover all these features, as for example, in the
mouth region in Figure[7] see also the approximation around various features in Figure[9]and Figure[I0] One possible
reason is that the feature lines on the parametric domain may cross Voronoi cells, hence the features are blurred.
Intuitively, cells aligning along the feature lines on the domain can be helpful for recovering the sharp features, as
the QSE surface is only CY on cell boundaries while it is smooth in the interior of a Voronoi cell. In this section,
we take Voronoi meshes generated by Algorithm 1 as input and further optimize the Voronoi meshes by using an L,
optimization method toward feature-conforming Voronoi meshes, such that the approximation results of input image
data with sharp features can be further improved.

4.1. Objective function

Assume that f(x) is a function defined over a compact 2D domain €, and the domain is discretized by a Voronoi
tessellation 7~ = {Q, € Q|k = 1,...,N} of a site set X = {xk},’le, where € is a Voronoi cell of site x; € X. We can
define the approximation error in L, sense as follows:

N

EGQY. 0 =Y | 1£®0 - QuwPax, @

k=1 Y

L
where Q; = ZA“ SV + f(Viie1)Wiie 1s the approximate function on € as defined in Equation . Note that the
i=1

above L, approximation error only depends on the site positions X, as the bases i;; or ¥; ;11 as well as their coefficients
are defined by the positions of vertices of the cells (equally, the sites). An efficient method for minimizing Equation
usually requires the computation of gradient. However, the bases are rational functions with respect to the positions of

9



M .E..0.004

M.E.:0.003

(=

Figure 7: Approximation results of face model (with 8k vertices) by using MVC based QSEs on VD with 156 cells (first row), MVCs on VD with
541 cells (second row), and BCs on DT 1054 cells (third row). Columns from left to right are the result surfaces, result surfaces with interpolated
points, color-coded approximation errors, and the tessellations generated by Algorithm 1. The R.M.S.E threshold is 0.001.

vertices of cells, and the expressions of vertex positions with respect to site positions also involve multiple square root
terms. Hence, the direct computation of gradient is complicated and time-consuming. To simplify the computation,
we minimize a slightly modified objective function as follows:

N
EGQ.. %) =) fQ F(®) - Qy®)Pdx, 3)
k=1 k

Ly
where 0 = 21 aﬁ ii+ af,l. Wiis1 is the optimal approximation on €, aﬁ . and aﬁi ., are the coefficients associated
P

with bases ¥;; and ¥; ;.1 on €, respectively. Intuitively, the modified objective function allows the coefficients «;; (or
@;i+1) associated with the same vertex (or midpoint of an edge) to be different on the adjacent cells, hence, relaxes the
C° continuity between adjacent patches. This modification is reasonable since if the approximation surface is close
enough to the given continuous function, then the different coefficients associated with the same vertex will be close
to each other. A further stitching operation can be performed to achieve C° continuity. This patch-stitching procedure
leads to an increase in approximation errors. To avoid the deterioration in approximation quality, an intuitive way
of finding the best stitched patches is to solve for the coefficients in a linear least square sense. Specifically, based
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Figure 8: Approximation results of function f(x,y) = y/x% +y2, (x,y) € [-1,1] x [-1, 1] by using QSEs on optimized Voronoi diagram with 1000
cells. (a) Initial Voronoi diagram (where the domain is color-coded by the value of the given function); (b) color-coded approximation error on the
initial mesh (M.E.: 6.9386E — 05, R.M.S.E: 9.9629E — 07); (c) Voronoi diagram optimized after 50 iterations; (d) color-coded approximation error
on the optimized mesh (M.E.: 3.4799E — 05, R M.S.E: 4.4063E — 07); (e) cumulated approximation errors of the results (by using four different
generalized barycentric coordinates based QSEs) v.s. fitting iteration numbers.

on the tessellation of the minimizer of Equation (3), we solve a linear least squares problem in the entire domain by
restricting all the coefficients associated with the same vertex/midpoint of an edge to be equal. A simpler, yet more
efficient method adopted in this paper for ensuring the C° continuous between patches is to replacing the coefficients
associated with the same vertex with the same value, e.g. the average of all the associated coefficients. It is because
that Voronoi meshes with a large number of cells (relative to image resolution) generate unstitched patches with very
small gaps between them. In other words, the coeflicients of the bases corresponding to the same vertices/midpoints,
though not equal, are very close to each other. Moreover, averaging these coefficients have no significant influence,
either on the approximation error or on the visual effect. Whereas, if the given function is discontinuous (such as
image data), coefficients associated with the same vertex may be required to be different, especially on discontinuous
regions. We will show this in Section[5} In this case, the stitching step is unnecessary.

4.2. Optimization method

To simplify the computation, we optimize alternately between the optimal approximations {Q,’:}k’\':1 and site set X.
For a fixed X (equally, partition 7°), the optimal approximation Q7 (x) on each cell £, i.e. the coefficients a*. and

i.‘l. 1> ¢an be obtained by solving a least-squares problem on each cell individually. On the other hand, with the fixed

functions {Q}} |,

a
the gradient of the objective function in Equation (3)) can be derived as follows :

OE(X —
= 2, fg (100 = QI = 11(%) — Q0P ) ——ds,

6Xi jeJ; |X J Xi |

where J; is the set of indices of the sites whose Voronoi cells are adjacent to €;. Then we adopt a modified gradient
descent method proposed in [8] for an efficient solution to the L, optimization. For the sake of completeness, we give
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Figure 9: Approximation on Elephant by using Poisson coordinates based QSEs on an optimized Voronoi diagram. Rows from top to bottom
are: Voronoi diagrams with 1000 cells, approximation images and color-coded approximation errors. The first (M.E : 2.2387, R.M.S .E. : 0.2887)
and second columns (M.E : 1.1684,R.M.S.E. : 0.0872) are the approximation results on the initial Voronoi diagram with and without stitching,
respectively. The last column (M.E : 0.9985,R.M.S.E. : 0.0813) is the approximation results after 30 iterations of the L, optimization procedure
without patches stitched for C° continuity. The same color code is used in the error visualization in all columns, where colors at the top and bottom
of the color bar correspond to values of 1.17 and 0, respectively.

a brief description of the L, optimization method here. Beginning with an initialization, we optimize all the positions
of the sites by:
; ; »OE(X) ‘6E(X) .
G+ ) ()
S =x" =0 ————=/|——|,i=1,..,N,
Xi Xi boox; / 0x; !

where j is the index of the current iteration, and 6§j) is the step length for x;. The step length 61(.j ) is controlled by the
formula

J
. 1 Imax—Jj
59 = g0 (E) i=1...N.

where I« is a specified maximum number of iterations and 650) is the initial step length for site x;, which is set as the
square root of the area of Q;.
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5. Experimental results

This section presents some examples to demonstrate the optimized approximation capability of our algorithms.
First, we approximate an analytic function f(x,y) = /x2 + y2, where (x,y) € [-1, 1] x [-1, 1], by using four different
barycentric coordinates (including mean value coordinates, Wachspress coordinates, Poissson coordinates and natural
neighbor coordinates) based QSEs. Totally 1000 sites are generated in the initial step and then the Voronoi diagrams
are optimized by the method proposed in Section 4. The plots of the cumulated errors of the approximate surfaces
against the iteration number are shown in the right-hand-most figure in Figure [§] from which we can see that the
optimization converges after about 30 iterations and the Poisson coordinates based QSEs perform slightly better than
other coordinates in the sense of reaching a lower cumulated approximation error. The initial Voronoi diagram and
the Voronoi diagram after 50 iterations of the optimization procedure, and the color-coded approximation errors of the
corresponding approximation results by using Poisson coordinates based QSEs are also shown in Figure |8} where the
patches on the Voronoi cells are stitched to become C continuous by simply replacing the coefficients associated with
the same vertex with the same value, i.e., the average of all associated coefficients. It can be observed that, the Voronoi
cells tend to be radially arranged and concentrated in the center of the domain after optimization. We also apply our
algorithm to image approximation and two examples are shown in Figure [0) and Figure [T0} respectively. Rows from
top to bottom are Voronoi diagrams with 1000 cells, approximation images on the Voronoi diagram, and color-coded
approximation errors. Again, Poisson coordinates based QSEs are adopted since they perform slightly better than
the others. The stitched and unstitched approximation results on initial Voronoi diagrams instead of the final Voronoi
diagrams are shown in the first and second columns, respectively, to better display the artifacts introduced by the
stitching, as the visual difference between the stitched and unstitched results are less obvious on the final Voronoi
diagrams. It can be seen that the approximation results without stitching are visually more pleasant than the stitched
ones. The approximation images after 30 iterations of the optimization procedure without stitching are shown in
the last columns in both Figure 0] and Figure [I0] We can observe that cells tend to align along the feature lines of
the images, and the errors are lowered and features are better preserved after optimization. Our algorithm can also be
adapted to other quadratic serendipity finite elements, such as the elements proposed in [15]. Through experiments we
find that our algorithm generates results with similar approximation errors using quadratic serendipity finite elements
proposed in [36] and [15]. Approximation results of using Wachspress based QSEs constructed by [15] and [36] are
shown in Figure where the former method (804s) took up slightly more time than the later method (717s). We
believe that our algorithm can also be easily adapted to polygonal elements with higher orders (e.g., [[15]]).

6. Conclusion

In this paper, we construct piecewise approximations of functional data on arbitrary 2D bounded domains, using
generalized barycentric, quadratic serendipity elements (QSEs) on Voronoi cells, and compare them to barycentric
finite elements on triangulations. We compare approximation qualities of linear and quadratic finite elements through
several numerical experiments, using different kinds of barycentric and generalized barycentric finite elements. T-
wo adaptive mesh refinement methods and an optimization method are presented for data approximation by using
QSEs. Experimental results show space/accuracy advantages for these finite elements on polygonal domains against
traditional finite elements over simplicial meshes.

Two non-uniform Voronoi mesh generation algorithms are also presented and specifically designed for the purpose
of surface fitting. They help achieve good tradeoffs between approximation accuracy with respect to the number of
Voronoi cells. We shall explore such tradeoffs in future work on isogeometric analysis, using quadratic serendipity
finite elements based on generalized barycentric coordinates over polygonal domains.
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Figure 10: Approximation on Lady by using Poisson coordinates based QSEs on an optimized Voronoi diagram. Rows from top to bottom are:
Voronoi diagrams with 1000 cells, approximation images and color-coded approximation errors. The first (M.E : 1.6866,R.M.S.E. : 0.1553)
and second columns (M.E : 0.8977,R.M.S.E. : 0.0438) are the approximation results on the initial Voronoi diagram with and without stitching,
respectively. The last column (M.E : 0.8984,R.M.S.E. : 0.0306) shows the approximation results after 30 iterations of the L, optimization
procedure without stitching. The same color code is used in the error visualization in all columns, where colors at the top and bottom of the color
bar correspond to values of 0.85 and 0, respectively.
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Figure 11: Comparison of approximations using Wachspress coordinates based QSEs constructed by two different methods [36]. Input image
resolution: 512 X 512. Rows on the top and at the bottom are the approximation results by QSEs constructed by and [36], respectively.
The first and third columns are the initial and final (after 100 optimization steps) Voronoi diagrams with 1000 cells. And the second and fourth
columns are the color coded approximation errors for the initial approximation results (M.E : 0.7479,R.M.S.E. : 0.0768 for [13], and M.E :
0.7964,R.M.S.E. : 0.0785 for [36]) and the final results (M.E : 0.6866,R.M.S.E. : 0.0588 for [13], and M.E : 0.6902,R.M.S .E. : 0.0584 for
). The same color code is used in the error visualization in all columns, where colors at the top and bottom of the color bar correspond to
values of 0.70 and 0, respectively. Running times for our approximation algorithm using QSE constructions from and are 805s and 717s,
respectively.
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